Chamfering operation on k-orbit maps
نویسندگان
چکیده
منابع مشابه
Map operations and k-orbit maps
A k-orbit map is a map with k flag-orbits under the action of its automorphism group. We give a basic theory of k-orbit maps and classify them up to k 6 4. “Hurwitz-like” upper bounds for the cardinality of the automorphism groups of 2orbit and 3-orbit maps on surfaces are given. Furthermore, we consider effects of operations like medial and truncation on k-orbit maps and use them in classifyin...
متن کاملAdditive maps on C$^*$-algebras commuting with $|.|^k$ on normal elements
Let $mathcal {A} $ and $mathcal {B} $ be C$^*$-algebras. Assume that $mathcal {A}$ is of real rank zero and unital with unit $I$ and $k>0$ is a real number. It is shown that if $Phi:mathcal{A} tomathcal{B}$ is an additive map preserving $|cdot|^k$ for all normal elements; that is, $Phi(|A|^k)=|Phi(A)|^k $ for all normal elements $Ainmathcal A$, $Phi(I)$ is a projection, and there exists a posit...
متن کاملk-Arbiter Join Operation
k-Arbiter is a useful concept for solving the distributed h-out of-k resources allocation problem. The distributed h-out of-k resources allocation algorithms based on k-arbiter have the benefits of high fault-tolerance and low communication cost. However, according to the definition of k-arbiter, it is required to have a non-empty intersection among any (k+1) quorums in a k-arbiter. Consequentl...
متن کامل$k$-power centralizing and $k$-power skew-centralizing maps on triangular rings
Let $mathcal A$ and $mathcal B$ be unital rings, and $mathcal M$ be an $(mathcal A, mathcal B)$-bimodule, which is faithful as a left $mathcal A$-module and also as a right $mathcal B$-module. Let ${mathcal U}=mbox{rm Tri}(mathcal A, mathcal M, mathcal B)$ be the triangular ring and ${mathcal Z}({mathcal U})$ its center. Assume that $f:{mathcal U}rightarrow{mathcal U}$ is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ars Mathematica Contemporanea
سال: 2014
ISSN: 1855-3974,1855-3966
DOI: 10.26493/1855-3974.541.133